Mathematics Class X Chapter -4 Quadratic Equations Module - 2/3

Smt Indumathi K
TGT (Maths/Phy) AECS,Kaiga.

Learning outcomes in module2/3 are:
*Roots / Zeroes of a Quadratic Equation.

Solution of a Quadratic Equation by Factorisation.

Roots/Zeroes of a Quadratic Equation:

- A real number α is called a root of the quadratic equation $a x^{2}+b x+c=0, a \neq 0$ if a $\alpha^{2}+b \alpha+c=0$.
Example: Consider the quadratic equation $x^{2}-8 x+12=0$. If we replace x by 2 on the LHS of this equation, we get $2^{2}-(8 \times 2)+$ $12=0=$ RHS of the equation. We say that 2 is a root of the quadratic equation $x^{2}-8 x+$ $12=0$. This also means that 2 is a zero of the quadratic polynomial $x^{2}-8 x+12$.

To Be Remembered

- The zeroes of the quadratic polynomial $a x^{2}+b x+c$ and the roots of the quadratic equation $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$ are the same.
- A quadratic polynomial can have at most two zeroes. So, any quadratic equation can have atmost two roots.

Solution of a Quadratic Equation by Factorisation

- We first write the given quadratic equation as product of two linear factors by splitting the middle term.
- By equating each factor to zero we get possible solutions/roots of the given quadratic equation

For Example: Find the roots of the equation $x^{2}-5 x+6=0$ by factorisation.

- Solution: Let us Ist split the middle term

$$
\begin{aligned}
& x^{2}-3 x-2 x+6=0 \\
& X(x-3)-2(x-3)=0 \\
& \text { i.e, }(x-3)(x-2)=0 \\
& \text { Put } x-3=0, x=3 \& x-2=0, x=2
\end{aligned}
$$

- So, $x=2 \& x=3$ are solutions of the given equation.

Questions for Practice.

Solve the following by factorisation:

1. $x^{2}+11 x+30=0$
2. $x^{2}+18 x+32=0$
3. $x^{2}+7 x-18=0$
4. $x^{2}+5 x-6=0$
5. $\mathrm{y}^{2}-4 \mathrm{y}+3=0$
6. $x^{2}-21 x+108=0$
7. $x^{2}-11 x-80=0$
8. $x^{2}-x-156=0$
9. $z^{2}-32 z-105=0$
10. $40+3 x-x^{2}=0$

Divide 27 into two parts such that sum of their reciprocals is $3 / 20$.
Solution: Let one part be x \& another part be 27-x

$$
\begin{aligned}
& \text { So, } 1 / \mathrm{x}+1 /(27-\mathrm{x})=3 / 20 \\
& (27-\mathrm{x}+\mathrm{x}) /(\mathrm{x}(27-\mathrm{x}))=3 / 20 \\
& 180=\mathrm{x}(27-\mathrm{x}) \\
& \mathrm{X}^{2}-27 \mathrm{x}+180=0 \\
& (\mathrm{x}-15)(\mathrm{x}-12)=0 \\
& \mathrm{X}=15, \mathrm{x}=12
\end{aligned}
$$

So, two parts are 15 \& 12

A speed of a boat in still water is $11 \mathrm{~km} /$ hour .It can go 12 km upstream \& return downstream to the original point in 2 hours 45 minutes. Find the speed of the stream.
Solution: Let the speed of the stream be $\mathrm{x} \mathrm{km} / \mathrm{h}$
Speed of the boat in still water $-11 \mathrm{~km} / \mathrm{h}$
\therefore Upstream speed $=11-\mathrm{x} \mathrm{km} / \mathrm{h} \&$ downstream speed $=11+\mathrm{x} \mathrm{km} / \mathrm{h}$
Distance $=12 \mathrm{~km}$
Time taken to travel downstream $=12 /(11+\mathrm{x})$ hours
Time taken to travel Upstream $=12 /(11-\mathrm{x})$ hours
ATQ, $12 /(11+\mathrm{x})+12 /(11-\mathrm{x})=23 / 4$
After simplification, $\mathrm{x}^{2}=25$
$\therefore \mathrm{x}= \pm 5$
Hence, speed of the stream $=5 \mathrm{~km} / \mathrm{h}$

A 2- digit number is such that product of its digits is 18 .When 63 is subtracted from the number, the digits interchange their places. Find the number.

Solution: Let digit at unit's place $=\mathrm{x} \&$ digit at ten's place $=\mathrm{y}$
\therefore Number $=10 \mathrm{y}+\mathrm{x}$
ATQ, $x y=18$
$\therefore y=18 / x$
$\& 10 y+x-63=10 x+y$
Or, $9 \mathrm{y}-9 \mathrm{x}-63=0$
Or, $y-x-7=0$
replacing $y=18 / x$ in the above equation we get, $18 / x-x-7=0$
$18-\mathrm{x}^{2}-7 \mathrm{x}=0$
$\mathrm{X}^{2}+7 \mathrm{x}-18=0$
$(x+9)(x-2)=0$
$X=-9, x=2$
When $\mathrm{x}=2, \mathrm{y}=18 / 2=9 \therefore$ Number $=92$.

A takes 6 days less than the time taken by B to finish a piece of work. If both A \& B together can finish it in 4 days, find the time taken by B to finish the work.

Solution: Let the number of days taken by B to finish the work $=\mathrm{x}$
\therefore Number of days taken by A to finish the work $=(x-6)$
Number of days taken by A \& B together $=4$
Now, A's one day work + B's one day work = one day's work of A \& B together.
$\therefore 1 /(\mathrm{x}-6)+1 / \mathrm{x}=1 / 4$
After simplification we get, $\mathrm{x}^{2}-14 \mathrm{x}+24=0$
After factorizing we get ($\mathrm{x}-12$) $(\mathrm{x}-2)=0$

$$
x=12, x=2, \text { but } x=2 \text { is not possible. }
$$

\therefore Number of days taken by B to finish the work $=12$.

THANK YOU

